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We study Bragg scattering at one-dimensional �1D� optical lattices. Cold atoms are confined by the optical
dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms
arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser
light incident on this chain is partially Bragg reflected. We observe an angular dependence of this Bragg
reflection which is different from what is known from crystalline solids. In solids, the scattering layers can be
taken to be infinitely spread �three-dimensional limit�. This is not generally true for an optical lattice consistent
of a 1D linear chain of pointlike scattering sites. By an explicit structure factor calculation, we derive a
generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect
ratio of the atomic lattice from the angular dependance of the Bragg scattered light.
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Bragg scattering is a widely used method for observing
and analyzing periodic structures. Introduced by von Laue
and Bragg more than 80 years ago, it has become an inesti-
mable tool in solid-state physics and crystallography �1�. In
quantum optics, the advent of powerful laser cooling and
trapping techniques has led to the realization of optical lat-
tices, i.e., periodic arrangements of ultracold atoms confined
to arrays of optical potentials formed by one or more stand-
ing light waves �2�. Optical Bragg scattering from three-
dimensional optical lattices has been first investigated by
Birkl et al. and Weidemüller et al. �3,4�. Bragg scattering
from a one-dimensional �1D� optical lattice has been realized
recently within our group �5�. At present, optical lattices play
an important role in many experiments. The observation of
Bloch oscillations �6� and the realization of Mott insulators
�7� and Tonks–Girardeau gases �8� in degenerate atomic
quantum gases are prominent examples. One-dimensional
optical lattices have interesting effects on the collective be-
havior of Bose–Einstein condensates �9�. Bragg diffraction
represents a powerful tool for sensitively probing the prop-
erties of such optical lattices. A method for phase-sensitive
Bragg spectroscopy based on heterodyning the Bragg-
reflected light with a reference light field has recently been
presented by our group �5�.

In this paper, we show how the Bragg condition—well
known from diffraction experiments with x rays at solids—
has to be modified, if the size of the crystal is limited. This is
done by an explicit calculation of the structure factor. We
experimentally test our model by probing the angular depen-
dence of the Bragg condition on a 1D optical lattice. This
enables us to determine the aspect ratio of the atomic lattice.
We find that our optical lattice occupies an intermediate po-
sition between a linear chain of pointlike scatterers and a
stack of extended homogeneous reflection layers reminiscent
to a dielectric mirror.

The optical layout of our experiment is shown in Fig. 1. It
consists of an optical cavity and a setup for Bragg scattering.
The cavity input coupler has a curvature �ic=50 cm and a
transmission Tic=0.2%, and the high reflecting mirror is
plane and has a transmission Thr=5�10−6. The measured
finesse of the cavity is 4000, and the beam diameter at its

center is wdip=220 �m. The light of a titanium–sapphire la-
ser operating at �dip=811 nm is coupled and frequency
locked to the cavity, thus forming a standing wave with pe-
riodicity �1/2��dip=� /kdip. The intracavity power is Pcav

=5 W. Between Ntot=105 and 107 85Rb atoms can be loaded
from a standard magneto-optical trap into the standing wave,
which is red detuned with respect to the rubidium D1 line.
From absorption spectroscopy of the atomic cloud, we
roughly estimate that about 10 000 antinodes are filled with
atoms. Typically, the temperature of the cloud is on the order
of a few 100 �K; we noticed in earlier experiments �10,11�
that the temperature of the cloud tends to adopt a fixed ratio
with the depth of the dipole trap. Therefore, the spatial dis-
tribution of the atoms does not vary much with the chosen
potential depth. For the trap in this setup, we measured
kBT�0.4U0. From this, we derive the root-mean-square size
of the atomic layers, 2�z= �1/���dip

�kBT /2U0�115 nm in
the harmonic approximation of the trapping potential. The
radial size is 2�r=wdip

�kBT /U0�140 �m and the
mean density can be adjusted between n=3�109 and
3�1011 cm−3.

The light used to probe the Bragg resonance is generated
with a near-infrared laser diode operating at �brg=780 nm.
The frequency is tuned to the Rb D2 line. The laser light is
collimated to a beam waist of wbrg=800 �m before crossing
the standing wave under an angle of �i=arccos��brg/�dip�
=15.9°. The irradiated light intensity is, with a total laser
power of Pi=300 nW, far below the saturation intensity.

FIG. 1. The experimental setup consists of a cavity pumped at
811 nm and a diode laser at 780 nm for Bragg scattering. The
Bragg-reflected light is observed on a CCD camera.
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Some time after loading the atoms into the standing wave the
Bragg light beam is switched on. The light reflected from the
atoms, Ps �several nW�, is detected with a charge coupled
device �CCD� camera �Sony XC55�, from which we get the
intensity profile of the reflected light beam. This allows us to
determine the reflection angle �s.

The Bragg condition follows from energy and momentum
conservation. Our standing wave dipole trap represents a 1D
optical lattice with the lattice constant d= 1

2�dipêz=dêz. The
Bragg condition requires that the difference beween the scat-
tered and the incident wave vectors, q�ks−ki, coincides
with a vector of the reciprocal grating R j = jG, where
G�2kdipêz. This implies

1
2�dip cos �i + 1

2�dip cos �s = �brg,

�i = − �s. �1�

The first equation is the condition for constructive interfer-
ence of light reflected from subsequent scattering planes. The
second equation arises from the fact that the radial atomic
distribution is nearly homogeneous on the length scale of a
wavelength. Together, Eq. �1� yields

�dip cos �i = �brg. �2�

The efficiency of Bragg scattering depends critically on the
angle of incidence �i. In order to probe the Bragg condition,
�i has to be varied over the value given by Eq. �2�. Experi-
mentally, it is easier to vary the wavelength of the lattice
laser �dip, while the angle of incidence is kept fixed. To reso-
nantly enhance the Bragg scattering, which otherwise would
be neglegibly small, we tune the laser to the transition be-
tween 5S1/2 ,F=3 and 5P3/2 ,F�=4 at �brg=780 nm with a
natural linewidth of 	brg/2�=6 MHz. During the Bragg
pulse sequence, the repumping laser of the magneto-optical
trap is kept on to avoid optical pumping into the ground state
F=2 level.

The Bragg condition �1� implies two equations. Their
claim is that for infinitely extended layers the angle of inci-
dence and the reflection angle are equal and their cosines
sum up to a fixed value. Both conditions are fulfilled, if the
incident beam is shone under the Bragg angle given by Eq.
�2� onto the atomic cloud. However, when the angle of inci-
dence is misaligned from the Bragg condition, one of these
equations must be violated. Which one it is depends on the
form of the atomic cloud. For radially extended clouds, we
expect the two angles to be equal. In contrast, for long lat-
tices �many layers� we expect that the sum of the angles
stays constant. This can be illustrated with a calculation of
the structure factor S�q�. Its absolute square is proportional
to the scattered light intensity �12�,

dP

d

� �S�q��2 = 	


V

na�r�eiqrd3r	2

, �3�

where na�r� is the atomic density within the lattice. We as-
sume for each layer a Gaussian density distribution, which is
well fulfilled in the harmonic approximation

nl�r� = n0e�−x2−y2�/2�r
2
e−z2/2�z

2
. �4�

The atoms are spread over Ns layers of the lattice yielding an
overall density distribution, which can be expressed as a con-
volution of the single site distribution with a sum of
�-functions,

na�r� = �
m=1

Ns

��r − md��nl�r� . �5�

Inserting Eq. �5� into Eq. �3� gives

�S�2 = 	�
m=1

Ns

eimqd

V

nl�r�eiqrd3r	2

. �6�

The sum in Eq. �6� can be written as an Airy function

�A�2 = 	�
m=1

Ns

eimqzd	2

=
1 − cos�Nsqzd�
1 − cos�qzd�

. �7�

Experimentally relevant is first-order scattering qzd=2�,
for which the Airy function reaches a maximum with
an approximated full width at half height of

2�kz=2�3�5−�5� /Nsd�2�2.88/Nsd. For this approxima-
tion, the cosines of the Airy function are expanded up to
sixth order and Ns
1. The integrals in Eq. �6�, one for every
direction in space, are evaluated functions, for example,

�B�qx��2 � 	
 eiqxxe−x2/2�r
2
dx	2

= 2��r
2e−qx

2�r
2
. �8�

On Bragg resonance qx=qy =0 and qz=2kdip. The full
width at half height of �B�qx��2 and �B�qy��2 is given by
2�kx,y =2�ln 2 /�r. The Debye-Waller factor �B�qz��2 can be
regarded as a constant attenuation of the structure factor
within the above calculated range 2�kz.

The above calculated widths �kx,y,z correspond to a certain
solid angle 
, into which the Bragg-scattered light is emit-
ted. The solid angle is given by 
=��1�2, with the half
opening angles �1 ,�2�1. The situation is simple for the
y direction, which is orthogonal to the scattering plane:
�1��ky /kbrg. Within the scattering plane, the widths �kx and
�kz have to be projected onto a plane orthogonal to the emis-
sion direction, as shown in Fig. 2. The opening angle �2 is
then determined by the maximum of the two projections:
�2=max
��kx /kbrg�cos �s , ��kz /kbrg�sin �s�. The total result
for the solid angle is therefore


 = �
�ln 2

�rkbrg
2 max��ln 2

�r
cos �s,

2.88

Nsd
sin �s� . �9�

In our case ��ln 2 /�r�cos �s
 �2.88/Nsd�sin �s, i.e., the
lattice behaves more like a linear chain of pointlike scatter-
ers. We find 
=6.6�10−6 s rad. We now calculate the direc-
tion of the emitted light beam. To this purpose, we assume
that the structure factor is an ellipsoid with Gaussian profile
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S = S0 exp�−
�k sin �s − k sin �i�2

2�kx
2

−
�k cos �s − 2kdip + k cos �i�2

2�kz
2 � , �10�

and search for the angle �s, for which the structure factor
gets largest on the intersection of the ellipsoid with the
Ewald sphere �see Fig. 3�. Implicitly contained is the as-
sumption that the scattering is elastic by setting ki=ks=kbrg.
The part vertical to the scattering plane �y direction� is omit-
ted, because its effect on the scattering angle is negligible.
Maximization of Eq. �10�, �S /��s=0, results in

�kz
2 − �kx

2 =
�kz

2 sin �i

sin �s
+ �cos �i −

2kdip

kbrg
� �kx

2

cos �s
. �11�

Two limiting cases are interesting: For small aspect ratios,
�kz /�kx�1, we recover the Bragg condition

�s � arccos�2kdip/kbrg − cos �i� . �12�

For large aspect ratios, �kz /�kx
1, we get the second of Eq.
�1�

�s � − �i. �13�

The impact of a finite structure factor can be seen in ex-
periment. There are two signatures: �1� The reflection angle
should deviate from the values predicted by the classical
Bragg condition �1�, and �2� the efficiency of the Bragg scat-
tering should exhibit a narrow resonance upon tuning the
lattice constant via �dip. The width of this resonance is given
by the radial spread of the layers within the lattice. These
signatures are observed in the following measurements.

In order to detune the Bragg condition, we vary the lattice
constant via the wavelength of the lattice laser. For each
lattice constant, the Bragg-diffracted light is shone onto a
CCD camera �see Figs. 4�a� and 4�b��. By fitting a Gaussian
curve to a horizontal cut through the image, we get the center
position of the beam. The pixel size of the camera is
lpx=7.4 �m. Together with the distance between camera and
atomic cloud, we determine the relative emission angle of
the Bragg beam for various lattice constants. Figure 4�c�
shows that the reflection angle varies with the lattice con-
stant, thus �s�−�i. Furthermore, the reflection angle slightly
deviates from Eq. �2� �dotted line�, but follows the general-
ized Bragg condition �11� �solid line�. The findings demon-
strate that our system is far from the assumption of infinitely
extended layers. By introducing the aspect ratio �=�kz

2 /�kx
2,

Eq. �11� is rewritten as

FIG. 2. Bragg reflection in real space. The gray ellipsoids sym-
bolize the atomic layers. Within the scattering plane the opening
angle 2�2 of the Bragg beam is found by projecting the widths �kx

and �kz onto a plane E orthogonal to the emission direction. The
size of the angle is given by the larger of the two projections, here
�kx.

FIG. 3. Bragg reflection in reciprocal space. The pictures show
cuts through the Ewald sphere and the ellipsoid structure factor. In
�a�, the probe laser frequency and angle fulfill the Bragg condition.
In �b�, the lattice constant has changed. The outgoing wave vector
ks1 has been chosen such that �s=−�i, the wave vector ks2 such that
cos �s+cos �i=2�brg/�dip. The light will be emitted in the direction
where the structure factor reaches its maximum on the intersection
with the Ewald sphere.

FIG. 4. �a� and �b� CCD pictures of the Bragg-reflected light for
two different lattice constants. By fitting a Gaussian curve to the
picture �not shown here� the center position of the beam is deter-
mined. From the displacement of the beams the relative emission
angle of the light beams is calculated. �c� Output angle as a function
of lattice constant. The measured values �rings� are compared to
various curves: The horizontal line is expected for �s=−�i, the
dotted line for condition �12�, and finally the solid line takes ac-
count of the finite lattice size and is a fit of Eq. �14� to the data
points. The fitting parameter is the aspect ratio �. The experimental
error of the data points lies well within the plotted circles.
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1

� − 1
��

sin �i

sin �s
+

cos �i − 2
kdip

kbrg

cos �s
� = 1. �14�

By fitting the data from Fig. 4�c� with Eq. �14� �fitting
parameter ��, we get an aspect ratio of �=0.01. This
means that the ratio of the width to the length of the
lattice 2�r /Nsd=2.9%. The radial size is approximately
2�r�140 �m, we therefore calculate a lattice length of
Nsd=4.8 mm. This means that about Ns=12 000 layers take
part in the Bragg scattering process, which exceeds our
rough guess of the lattice length by 20%. The comparatively
narrow radial atomic distribution implies a self-adjustment of
the Bragg condition to the lattice constant, i.e., cos �s
+cos �i is automatically kept constant. Still, small deviations
from this situation �dotted line in Fig. 4�c�� are experimen-
tally seen.

The tolerance for the acceptance angle is equal to the
divergence of the outgoing beam 2�2. As can be seen

from the calculation of the output solid angle �Eq. �9��
2�2=2�ln 2 /�rkbrg=0.17°. To compare this value with the
experimental data, the intensity of the reflected light ex-
tracted from Figs. 4�a� and 4�b� is plotted against the emis-
sion angle. These data are then fitted by a Gaussian curve
�see Fig. 5�. The full width at half maximum of this fit is
2��=0.16°, which agrees very well with the theoretical
value of 2�2.

In conclusion, we studied Bragg reflection at a 1D optical
lattice. From a structure factor calculation, we deduce a gen-
eralized Bragg condition which is valid not only in the solid-
state physics limit of infinitely spread scattering layers, but
also for the case where boundary effects play a role, with the
extreme limit of a linear chain of localized scatterers. By
comparing the theoretical results with measurements of the
emission angle of the Bragg-reflected light, we show that our
optical lattice is very close to the latter case. This case is
characterized by the fact that it is hard to detune the light
scattering away from the Bragg condition, because the emis-
sion angle self-adjusts to the Bragg condition. This can have
undesired consequences for the probing of 1D photonic
bandgaps predicted to appear in optical lattices as a conse-
quence of multiple reflections between subsequent layers
�13,14�. Indeed, their signatures are most conveniently
probed at a detuned Bragg angle, such that the band edge
spectrally lies outside the resonance frequency of the atomic
transition. In this way, the region close to the atomic transi-
tion, where multiple reflection competes with diffuse light
scattering �3� can be avoided. This is not possible, if the
lattice is close to being a chain of point scatterers. Ways to
overcome this problem include the choice of larger beam
diameter for the dipole trap �eventually by confining the at-
oms in higher-order transverse electromagnetic modes �10��,
smaller Bragg angles, and longer lattices.
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FIG. 5. Intensity of the reflected light against emission angle.
The data points �circles� are fitted with a Gaussian curve. The ac-
ceptance angle of the Bragg reflection equals the width of this fit.
The error of the data points is due to shot-to-shot fluctuation and
lies in the 20% range.
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